Abstract

Human whole blood assays are increasingly employed to test immune function or detect pyrogenic contamination, since they offer advantages, such as ease of performance, few preparation artifacts and a physiological cell environment. However, the approach is often limited by the availability of freshly drawn blood, putative safety concerns in the case of infected donors and interindividual donor differences. To overcome these limitations, a method was developed and optimized to produce batches of cryopreserved blood that can be used directly after thawing without any washing steps. Mononuclear cells remained intact as shown by FACS analysis. Cytokine release could be induced by a variety of immunological stimuli. The cell preparation released higher amounts of interleukin-1β (IL-1β) and IL-6 compared to fresh blood, but no TNF. These differences could be attributed to the presence of the cryoprotectant dimethylsulfoxide (DMSO) alone by addition of DMSO to fresh blood. Large batches of cryopreserved blood could be produced by mixing blood donations of up to 10 donors, independent of differing blood groups. The detection limit for the World Health Organization (WHO) lipopolysaccharides (endotoxin, LPS) reference preparation (EC-6) with regard to the induction of IL-1β release was at least 0.5 endotoxin equivalent units (EU)/ml. Endotoxin spikes at the limit concentrations prescribed in the European Pharmacopoeia could be detected in a series of drugs, showing that the In vitro Pyrogen Test (IPT) can also be run with cryopreserved blood. Further possible applications include high-throughput screening for immunomodulators or toxins as well as preservation of patient samples for later analysis of cell functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.