Abstract

Exopolysaccharide (EPS) has been known to be a good cryoprotective agent for bacteria, but it has not been tested for cyanobacteria and eukaryotic microalgae. In this study, we used EPS extracted from a glacier bacterium as a cryoprotective agent for the cryopreservation of three unicellular cyanobacteria and two eukaryotic microalgae. Different concentrations of EPS (10%, 15%, and 20%) were tested, and the highest concentration (20%) of EPS yielded the best growth recovery for the algal strains we tested. We also compared EPS with 5% dimethyl sulfoxide (DMSO) and 10% glycerol for the cryopreservation recovery. The growth recovery for the microalgal strains after nine months of cryopreservation was better than 5% DMSO, a well-known cryoprotectant for microalgae. A poor recovery was recorded for all the tested strains with 10% glycerol as a cryoprotective agent. The patterns of growth recovery for most of these strains were similar after 5 days, 15 days, and 9 months of cryopreservation. Unlike common cryopreservants such as DMSO or methanol, which are hazardous materials, EPS is safe to handle. We demonstrate that the EPS from a psychrotrophic bacterium helped in the long-term cryopreservation of cyanobacteria and microalgae, and it has the potential to be used as natural cryoprotective agent for other cells.

Highlights

  • Many eukaryotic microalgae and cyanobacteria have been isolated from natural environments

  • We demonstrate that the EPS from a psychrotrophic bacterium helped in the long-term cryopreservation of cyanobacteria and microalgae, and it has the potential to be used as natural cryoprotective agent for other cells

  • The EPS in our study provided significant cryoprotection to another bacterium (E. coli K12), which was comparable to 20% glycerol [23]

Read more

Summary

Introduction

Many eukaryotic microalgae and cyanobacteria have been isolated from natural environments. These microalgae contain many specific properties that have research and commercial value. They are cultivated and maintained in different laboratories worldwide, and many algal cultures have been deposited in culture collection centers. Some photoautotrophic organisms have been maintained in laboratories through serial sub-culturing [5]. This method of culture maintenance has inherent disadvantages, including culture contamination (either bacterial or cross contamination with other strains), time- and labor-intensive processes, and expensive resources when it involves large culture collections [6]

Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.