Abstract

The systemic administration of autologous bone marrow (BM) derived mononuclear cells (MNCs) is under investigation as a novel therapeutic modality for the treatment of ischemic stroke. Autologous applications raise the possibility that MNCs could potentially be stored as a banked source. There have been no studies that investigate the effects of cryopreservation of BM-MNCs on their functional abilities in stroke models. In the present study, C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAo) for 60 minutes and then divided into two treatment groups: fresh MNCs versus cryopreserved MNCs. BM-MNCs were collected at 22 hours after MCAo and were stored in liquid nitrogen for 12 months in cryopreserved MNCs group. BM-MNCs cellular viability, composition, and phenotype of the various subpopulations of mice BM-MNCs were evaluated by flow cytometry, and the behavioral recovery of stroke animals was tested with freshly harvested MNCs versus cryopreserved MNCs by corner test and ladder rung test. We found that long-term cryopreservation negatively impacts the cellular viability of bone marrow MNCs. Cryopreservation also alters the cellular composition of various subpopulations within the MNCs. However, despite the changes observed in cryopreserved cells, both fresh and frozen MNCs have similar beneficial effect on behavioral and histological outcomes.

Highlights

  • The systemic administration of autologous bone marrow (BM) derived mononuclear cells (MNCs) is under investigation as a novel therapeutic modality for the treatment of ischemic stroke [1, 2]

  • As we intended to mimic the possible clinical scenario of using cells from a cell bank, we tested the use of mouse BM-MNCs that were cryopreserved for 12 months

  • We found that the viability of MNCs was significantly decreased

Read more

Summary

Introduction

The systemic administration of autologous bone marrow (BM) derived mononuclear cells (MNCs) is under investigation as a novel therapeutic modality for the treatment of ischemic stroke [1, 2]. It has been reported that cryopreserved human bone marrow MNCs do not alter the ability of osteoblastogenesis as a mesenchymal stromal cells source compared to fresh collected MNCs [13]. There have been no studies that have investigated the effects of cryopreservation of BM-MNCs on their functional abilities in stroke models. We conducted this study to evaluate the effects of cryopreservation on cellular viability, composition, and phenotype of the various subpopulations of mice BM-MNCs and test the effect of cryopreservation on behavioral recovery of ischemic animals administered intravenously with fresh versus cryopreserved MNCs

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call