Abstract

Genetic modifications in combination with highly sophisticated assisted reproductive technologies such as in vitro oocyte maturation and development, in vitro fertilization, intracytoplasmic sperm injection, and in vitro embryo culture have opened many research avenues and treatment options for both animals and humans. The number of genetically modified (GM) rodent strains increased considerably during the last several decades, and their numbers are expected to increase due to efficient gene editing technologies including the CRISPR/Cas9. Rodent ovarian tissues (OT) cryopreservation and transplantation procedures have several applications in biomedical field: they provide a fertility restoration option for GM rodent strains in some circumstances. They also serve as models to investigate OT cryopreservation as potential alternatives for human infertility patients as well as other domestic and wildlife species for the development of improved cryopreservation and subsequent transplantation strategies. The modeling studies enable determining effective cryoprotective agents (CPA), CPA and water permeability kinetics, and cooling and warming rates during the development of OT cryopreservation procedures. Furthermore, rodent models are extremely useful for determining post-thaw OT graft sites as well as potential medical interventions in an effort to expedite angiogenesis and inhibit inflammatory/immune response, OT longevity, and follicular integrity. Here we describe methodologies for rodent OT cryopreservation and potential transplantation sites for frozen-thawed rat and mouse OT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call