Abstract
Anisotropic particles exhibit directional interactions resulting in a rich phase behavior. Considerable efforts have thus been invested in guiding particle synthesis into an anisotropic direction. Dumbbell-shaped polymer particles are one of the most remarkable examples. They result from phase separation during seeded polymerization. The underlying mechanism and thermodynamic principles are understood from its proximal end. Segregation of monomer and seed particle results in a monomer protrusion attached to the seed. Polymerization of the protrusion finally yields particles with two bulb-shaped halves. Little attention has been paid to an investigation of transient states, namely the formation of liquid protrusions grown from monomer-swollen seeds. This study demonstrates that cryogenic transmission electron microscopy is an excellent tool for mapping transient states within colloidal objects. Swelling of polymer particles and formation of liquid protrusions mediated by a surface coating on the seeds is explored for styrene and methyl-methacrylate at different temperatures and monomer-to-seed volume ratios.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.