Abstract

Since the Quaternary, the alternate climate of dry and wet, cold and warm, and the emergence of glacial and interglacial periods have led to great changes in the global environment and climate. As an event closely related to cold climate, cryogenic soil has important reference significance for the study of climate change in a certain region and time period. The research on cryogenic soils mainly focuses on the following three aspects: particle size composition, surface morphology and mineral composition. Through the study of the relevant literature, we find that the correlation coefficient of particle size composition before and after freeze-thaw is used to determine the cause of cryogenic weathering. Due to the singleness of judgment conditions, the result is difficult to be convincing; It is difficult to prove the microscopic morphology of the cause of cryogenic weathering from a single mineral of quartz. Therefore, it is necessary to start with more types of primary minerals, and analyze the differences in the particle shape and microscopic surface morphology of different types of primary minerals during the cryogenic weathering process. And on this basis, the typical mineral morphology of the cause of cryogenic weathering is comprehensively judged; Freeze-thaw has little effect on the mineral composition of the soil, but has a greater impact on the size of the mineral particles, and this size change corresponds to the phenomenon of particles silt-fication. The mineral composition also controls the geochemical composition, and the insignificance of the mineral-chemical composition in the process of cryogenic silt-fication increases the difficulty of judging the cause of cryogenic weathering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.