Abstract

The photosynthetic reaction center (RC) converts light energy into electrochemical energy. The RC of heliobacteria (hRC) is a primitive homodimeric RC containing 58 bacteriochlorophylls and 2 chlorophyll as. The chlorophyll serves as the primary electron acceptor (Chl a-A0) responsible for light harvesting and charge separation. The single-molecule spectroscopy of Chl a-A0 can be used to investigate heterogeneities of the RC photochemical function, though the low fluorescence quantum yield (0.1%) makes it difficult. Here, we show the fluorescence excitation spectroscopy of individual Chl a-A0s in single hRCs at 6 K. The fluorescence quantum yield and absorption cross section of Chl a-A0 increase 2- and 4-fold, respectively, compared to those at room temperature. The two Chl a-A0s in single hRCs are identified as two distinct peaks in the fluorescence excitation spectrum, exhibiting different excitation polarization dependences. The spectral changes caused by photobleaching indicate the energy transfer across subunits in the hRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call