Abstract

The first operation of a cryogenic Resistive Plate WELL (RPWELL) detector in the saturated vapor of liquid argon is reported. The RPWELL detector was composed of a Thick Gas Electron Multiplier (THGEM) electrode coupled to a metallic anode via Fe2O3/YSZ ceramics (Fe2O3 in weight equal to 75%), with tunable bulk resistivity in the range 109–1012 Ω·cm. The detector was operated at liquid argon temperature in saturated argon vapor (90 K, 1.2 bar) and characterized in terms of its effective charge gain and stability against discharges. Maximum stable gain of G≈17 was obtained, without discharges. In addition, preliminary results from novel 3D-printed thermoplastic plates doped with carbon nanotubes are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call