Abstract

Cryogenic phonon–scintillation detectors (CPSD) for rare event search experiments require reliable, efficient and robust photon detectors that can resolve individual photons in a scintillation event. We report on a cryogenic detector containing a scintillating crystal, equipped with an NTD-Ge phonon sensor and a photon detector based on a low-temperature photomultiplier tube (PMT) that is powered by a Cockcroft–Walton generator. Here we present results from the characterisation of two detector modules, one with CaWO4, the other with CaMoO4 as scintillator. The energy resolutions (FWHM) at 122.1keV for the scintillation/PMT channel are 19.9% and 29.7% respectively for CaWO4 and CaMoO4 while the energy resolutions (FWHM) for the phonon channels are 2.17keV (1.8%) and 0.97keV (0.79%). These characteristics compare favourably with other CPSDs currently used in cryogenic rare-event search experiments. The detection module with PMT readout benefits from the implementation of a well-understood, reliable, and commercially available component and improved time resolution, while retaining the major advantages of conventional CPSD, such as high sensitivity, resolving power and discrimination ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call