Abstract

Cryogenically cooled low-noise amplifiers (LNAs) have had a profound impact on experimental science. For instance, these amplifiers allow us to communicate with distant spacecraft, probe the history and composition of the universe through radio astronomy, study basic phenomena through low-temperature physics research, and read out the state of quantum systems as required for quantum computing. These devices-which can achieve noise performance within an order of magnitude of the fundamental limits imposed by quantum mechanics-find use from low frequencies through several hundreds of gigahertz. Without cryogenic LNAs, whole branches of experimental science simply could not exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.