Abstract

The CALDER project aims to realize cryogenic light detectors for the next generation of experiments searching for rare events. More in detail, the main application of these devices will be the background suppression in future cryogenic calorimetric experiments searching for neutrinoless double beta decay ( $$0\nu $$ DBD). This is the case of CUPID, a next-generation $$0\nu $$ DBD observatory, able to take advantage from particle identification to dramatically reduce the background events. In this contribution, we show the status of the CALDER project. The light sensors developed in this R&D are based on kinetic inductance detector operated in the phonon-mediated approach. Their energy resolution (20 eV), time response ( $$\upmu $$ s) and multiplexing capability make them very promising for the future CUPID experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.