Abstract

The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument was built to determine whether and to what extent small‐scale structures in global trace gas distributions and in dynamics are present in the middle atmosphere. To achieve this, trace gases were measured in the middle infrared by the limb scan technique at the highest possible horizontal and vertical resolution. CRISTA uses three telescopes (i.e., three view directions) simultaneously, and has three grating spectrometers for the middle IR (4–14 μm) and one spectrometer for the far IR (15–71 μm). The optics and detectors are cooled to cryogenic temperatures by supercritical helium or subcooled helium, respectively, in a double cryostat. An instrument overview is given, and the design guidelines are sketched. The CRISTA experiment was flown on the space shuttle STS 66 as part of NASA mission ATLAS 3 on November 3–14, 1994. Orbit altitude was 300 km, and inclination was 57°. A campaign of ground‐based, balloon, and rocket validation and complementary measurements was performed simultaneously. The CRISTA instrument performed flawlessly. A horizontal resolution of 200 km × 650 km was achieved at the equator, with higher horizontal resolution at higher latitudes. A vertical resolution of 2.5 km (or better) was obtained. The middle atmosphere was found to be highly variable at scales of <1000 km in the stratosphere. Three streamers of tropic/subtropic air extending to higher latitudes are described. Their meridional scale is ≤1000 km, while the zonal scale is of the order of 10,000 km and more. The streamers appear to be typical of specific winter conditions and to play a role in meridional transport. At mesospheric heights a strong tidal temperature oscillation was observed which extended well into the lower thermosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.