Abstract

Abstract Uniaxial strain is a powerful tuning parameter that can control symmetry and anisotropic electronic properties in iron-based superconductors. However, accurately characterizing anisotropic strain can be challenging and complex. Here, we utilize a cryogenic optical system equipped with a high-spatial-resolution microscope to characterize surface strains in iron-based superconductors using the digital image correlation method. Compared with other methods such as high-resolution X-ray diffraction, strain gauge, and capacitive sensor, digital image correlation offers a non-contact, full-field measurement approach, acting as an optical virtual strain gauge that provides high spatial resolution. The results measured on detwinned BaFe2As2 are quantitatively consistent with the distortion measured by X-ray diffraction and neutron Larmor diffraction. These findings highlight the potential of cryogenic digital image correlation as an effective and accessible tool for probing the isotropic and anisotropic strains, facilitating the application of uniaxial strain tuning in the study of quantum materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.