Abstract

Well-formed equimolar CrMnFeCoNi high-entropy alloy (HEA) bulk samples with good tensile properties are fabricated by laser additive manufacturing (LAM) processing. To elucidate the deformation mechanism, tensile tests are performed on at 77 K and 293 K and interrupted at different strains. Electron backscatter diffraction and X-ray diffraction indicate that the large initial dislocation density introduced by LAM processing increases the yield strength significantly and dislocation motion is the dominant deformation mechanism. In addition, deformation twinning is a large addition at large strain levels under cryogenic conditions. These two mechanisms and their interaction produce the excellent mechanical properties of bulk HEA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.