Abstract

AbstractCryogenic single‐particle photoluminescence (PL) spectroscopy has been used with great success to directly observe the heterogeneous photophysical states present in a population of luminescent particles. Cryogenic electron tomography provides complementary nanometer scale structural information to PL spectroscopy, but the two techniques have not been correlated due to technical challenges. Here, we present a method for correlating single‐particle information from these two powerful microscopy modalities. We simultaneously observe PL brightness, emission spectrum, and in‐plane excitation dipole orientation of CdSSe/ZnS quantum dots suspended in vitreous ice. Stable and fluctuating emitters were observed, as well as a surprising splitting of the PL spectrum into two bands with an average energy separation of 80 meV. In some cases, the onset of the splitting corresponded to changes in the in‐plane excitation dipole orientation. These dynamics were assigned to structures of individual quantum dots and the excitation dipoles were visualized in the context of structural features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.