Abstract

The helium cryogenic system at Spallation Neutron Source (SNS) provides cooling to 81 superconducting radio frequency cavities. To support the operation of the cryogenic facility, a highly reliable control system consisting of software, hardware, and Human Machine Interface (HMI) has been developed and improved during the first fifteen years of operation. Integrating the cryogenic control system with other subsystems of the SNS complex is an important aspect to the success of the operation. The operating experience, lessons learned and recommendations to consider for future facilities will be detailed in this paper.

Highlights

  • Spallation Neutron Source (SNS) cryogenic system The design of the SNS cryogenic system is similar to the system deployed at Thomas Jefferson National Accelerator Facility (TJNAF) with some modifications

  • Reliability The SNS cryogenic system has been 99.7% reliable over the last ten years operating, on average, 5000 h per year. This equates to approximately 14 h of down time per year

  • That means each subcomponent of the system must greatly exceed 99.7% reliability to ensure the continued operating record of excellence

Read more

Summary

Introduction

SNS cryogenic system The design of the SNS cryogenic system is similar to the system deployed at Thomas Jefferson National Accelerator Facility (TJNAF) with some modifications. The SNS system is designed with about 60 % of the refrigeration capacity of the original TJNAF system [1]. The major components of the system include a purifier, helium gas storage, warm compressors, 4.5-K cold box, liquid helium storage, 2-K cold box, linear accelerator (LINAC) distribution system, controls system and additional ancillary systems

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.