Abstract

Accurate detection of quantum states is a vital step in the development of quantum computing. Image-charge detection of quantum states of electrons on liquid helium can potentially be used for the readout of a single-electron qubit; however, low sensitivity due to added noise hinders its usage in high fidelity and bandwidth (BW) applications. One method to improve the readout accuracy and bandwidth is to use cryogenic amplifications near the signal source to minimize the effects of stray capacitance. We experimentally demonstrate a two-stage amplification scheme with a low power dissipation of 90 {\mu}W at the first stage located at the still plate of the dilution refrigerator and a high gain of 40 dB at the second stage located at the 4 K plate. The good impedance matching between different stages and output devices ensure high BW and constant gain in a wide frequency range. The detected image-charge signals are compared for one-stage and two-stage amplification schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.