Abstract

Nucleosome chains fold and self-associate to form higher-order structures whose internal organization is unknown. Here, cryoelectron tomography (cryo-ET) of native human chromatin reveals intrinsic folding motifs such as (1) non-uniform nucleosome stacking, (2) intermittent parallel and perpendicular orientations of adjacent nucleosome planes, and (3) a regressive nucleosome chain path, which deviates from the direct zigzag topology seen in reconstituted nucleosomal arrays. By examining the self-associated structures, we observed prominent nucleosome stacking in cis and anti-parallel nucleosome interactions, which are consistent with partial nucleosome interdigitation in trans. Histone citrullination strongly inhibits nucleosome stacking and self-association with a modest effect on chromatin folding, whereas the reconstituted arrays undergo a dramatic unfolding into open zigzag chains induced by histone citrullination. This study sheds light on the internal structure of compact chromatin nanoparticles and suggests a mechanism for how epigenetic changes in chromatin folding are retained across both open and condensed forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call