Abstract

In modern structural biology, there are three major methods for structural biologists to obtain structural information of macromolecules: cryo-electron microscopy (cryo-EM), nuclear magnetic resonance (NMR), and X-ray crystallography. Cryo-EM, in comparison with the other two methods, allows structural biologists to obtain the structures of various macromolecules in a more native and less perturbed system. Over the past decade, cryo-EM has enabled scientists to determine the structures of protein complexes at atomic resolution and made a profound impact in molecular bioscience and pharmaceutical sectors. Along with cryo-EM, another emerging technique called cryo-electron tomography (cryo-ET) has gained increasing importance in structural biology. It has the potential to visualize macromolecular complexes and assemblies in their native environments at high resolution, but there are still some challenges for small, sparse subjects and in approaching atomic resolution in situ. This chapter summarizes the major steps involved in structure determination using cryo-EM and cryo-ET and highlights the major challenges for in situ cryo-ET. We also present a few examples of near-atomic resolution structure determination of macromolecular assemblies both in purified systems in vitro and in native contexts in situ. Future perspectives are discussed as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call