Abstract
Quantum computers hold the promise to solve some of the most complex problems of today. The core of a quantum computer is a quantum processor, which is composed of quantum bits (qubits). Qubits are fragile and their state needs to be corrected in real time by a classical controller. Today, the control of qubits is done at room temperature by racks of instruments, while qubits operate at several tens of milli-Kelvin. To ensure compactness, and eventually scalability, we have proposed the use of controllers operating at a few Kelvin, so as to reduce the length of control cables, while potentially enabling superconductive interconnects, which enable virtually zero resistance and low thermal conductivity. We have chosen CMOS to achieve this functionality due to its scalable nature and overall miniaturization opportunities. Cryogenic CMOS, or cryo-CMOS, circuits and systems need to be carefully designed, so as to ensure low noise and high bandwidth, while operating at strict power budgets of a few milliwatts per qubit. In this paper, we outline the requirements of a classical controller and we show examples of such circuits and systems. Results and perspectives are presented discussing a roadmap for the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.