Abstract

The detection of nanobubbles on surfaces is well established (e.g., AFM and optical microscopy methods), but currently no methods exist for the direct detection of bulk nanobubbles. Here, cryo-electron microscopy (cryo-EM) has been employed to observe bubbles in aqueous solutions for the first time. Nitrogen bubbles generated by a chemical reaction were observed in amorphous ice trapped between two carbon films. The cryo-EM images of bubbles showed the same features as predicted by theory. The fact that no bubbles were observed near an air-water interface suggests that bubbles may diffuse to the nearby air-water interface and escape. The estimate of the bubble diffusion coefficient is about 30-250 μm2/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.