Abstract

The platform chemical 3-hydroxypropionic acid is used to synthesize various valuable materials, including bioplastics. Bifunctional malonyl-CoA reductase is a key enzyme in 3-hydroxypropionic acid biosynthesis as it catalyzes the two-step reduction of malonyl-CoA to malonate semialdehyde to 3-hydroxypropionic acid. Here, we report the cryo-EM structure of a full-length malonyl-CoA reductase protein from Chloroflexus aurantiacus (CaMCRFull). The EM model of CaMCRFull reveals a tandem helix architecture comprising an N-terminal (CaMCRND) and a C-terminal (CaMCRCD) domain. The CaMCRFull model also revealed that the enzyme undergoes a dynamic domain movement between CaMCRND and CaMCRCD due to the presence of a flexible linker between these two domains. Increasing the flexibility and extension of the linker resulted in a twofold increase in enzyme activity, indicating that for CaMCR, domain movement is crucial for high enzyme activity. We also describe the structural features of CaMCRND and CaMCRCD. This study reveals the protein structures underlying the molecular mechanism of CaMCRFull and thereby provides valuable information for future enzyme engineering to improve the productivity of 3-hydroxypropionic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call