Abstract

This study describes three closely related proteins, cloned from Brevibacillus laterosporus strains, that are lethal upon feeding to Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR). Mpp75Aa1, Mpp75Aa2 and Mpp75Aa3 were toxic to WCR larvae when fed purified protein. Transgenic plants expressing each mMpp75Aa protein were protected from feeding damage and showed significant reduction in adult emergence from infested plants by both susceptible and Cry3Bb1 and Cry34Ab1/Cry35Ab1-resistant WCR. These results demonstrate that proteins from B. laterosporus are as efficacious as the well-known Bacillus thuringiensis (Bt) insecticidal proteins in controlling major insect pests such as WCR. The deployment of transgenic maize expressing mMpp75Aa along with other active molecules lacking cross-resistance have the potential to be a useful tool for control of WCR populations resistant to current Bt traits.IMPORTANCE Insects feeding on roots of crops can damage the plant roots resulting in yield loss due to poor water and nutrient uptake and plant lodging. In maize the western corn rootworm (WCR) can cause severe damage to the roots resulting in significant economic loss for farmers. Genetically modified (GM) expressing Bacillus thuringiensis (Bt) insect control proteins, has provided a solution for control of these pests. In recent years populations of WCR resistant to the Bt proteins in commercial GM maize have emerged. There is a need to develop new insecticidal traits for the control of WCR populations resistant to current commercial traits. New proteins with commercial level efficacy on WCR from sources other than Bt are becoming more critical. The Mpp75Aa proteins, from B. laterosporus, when expressed in maize, are efficacious against the resistant populations of WCR and have the potential to provide solutions for control of resistant WCR.

Highlights

  • This study describes three closely related proteins cloned from Brevibacillus laterosporus strains that are lethal upon feeding to Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR)

  • The three source strains for Mpp75Aa from B. laterosporus were isolated from grain dust, and the B.O.D. strain was isolated from the powder of a commercially available probiotic capsule

  • The bacteria were presumptively identified as B. laterosporus based on the presence of a spore and the presence of the typical canoe-shaped parasporal body (CSPB) firmly attached to one side of the spore [19, 28]

Read more

Summary

Introduction

This study describes three closely related proteins cloned from Brevibacillus laterosporus strains that are lethal upon feeding to Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR). Transgenic plants expressing each mMpp75Aa protein were protected from feeding damage and showed a significant reduction in adult emergence from infested plants by both susceptible Cry3Bb1 and Cry34Ab1/Cry35Ab1-resistant WCR. These results demonstrate that proteins from B. laterosporus are as efficacious as the well-known Bacillus thuringiensis insecticidal proteins in controlling major insect pests such as WCR. The deployment of transgenic maize expressing mMpp75Aa, along with other active molecules lacking cross-resistance, has the potential to be a useful tool for control of WCR populations resistant to current B. thuringiensis traits. There is a need to develop new insecticidal traits for the control of WCR populations resistant to current commercial traits. The discovery of these field populations highlights the need to bring to the market new molecules to control WCR in maize that are not cross resistant to Cry3Bb1 and Cry34Ab1/Cry35Ab1

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call