Abstract

A novel nanocomposite, named as nZVI@LH, was prepared by nanoscale zero-valent iron (nZVI) supported on lignin hydrogel and was used in the remediation of Cr(VI)-contaminated soil collected from an industrial site. Meanwhile, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and X-ray diffractometry (XRD) results determined that nZVI nanoparticles disperse uniformly on hydrogel. After the 14 days remediation, the immobilization efficiency of Cr(VI) could reach over 87% in the treatment of 3% (w/w%) nZVI@LH and 26% in the treatment of bare-nZVI. Leaching experiment results showed that the treatment group with 3% (w/w%) nZVI@LH was up to the national leaching toxicity identification standard, and there was no threat in simulation of acid rain over the long term. The water-soluble (WS) fraction in 3# nZVI@LH treatment decreased 31.1%, while the Fe–Mn oxide bound (OX) fraction and organic matter-bound (OM) fraction increased 10.9% and 13.4%, respectively. Moreover, nZVI@LH had limited impact on soil properties and the capability to immobilize Cr over a long period exposure to acid rain. This work prove that nZVI@LH has the potential to remediate Cr contaminated soil. Furthermore, details of possible mechanistic insight into the Cr remediation were carefully discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call