Abstract

New seismic data from the Central Andes allow us to clarify the crustal structure of this mountain chain and to address the problem of crustal thickening. Evidence for the deep crustal root can be observed in both gravimetric and seismological data. Crustal structure and composition change significantly from east to west. In the eastern part of the backarc the Moho discontinuity is clearly recognisable. However only poor Moho arrivals are observed by active seismic measurements beneath the Altiplano and the Western Cordillera where broad-band seismology data indicate such a discontinuity. In the Precordillera, a pronounced discontinuity is detected at a depth of 70 km. Along the coast, the oceanic Moho is developed at a depth of 40 km. There are several processes which can change the petrological and petrophysical properties of the rocks forming the crust. Variations of the classical Moho discontinuity are presented which do not correspond to the petrological crust/mantle boundary. Tectonic shortening in the backarc is the dominant process contributing to at least 50–55% to the root formation along 21°S. In the forearc and arc, hydration of the mantle wedge produced ≈15–20% of crustal thickening. Magmatic thickening and tectonic erosion contributed only ≈5%. The other ≈25% is not yet explained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call