Abstract
The structure of the Ciudad Rodrigo area (Iberian Massif, Central Iberian Zone) has been revisited in order to integrate new geological data with recent models of the evolution of the Iberian Massif. Detailed mapping of fold structures along with a compilation of field data have been used to constrain the geometry and relative timing of ductile deformation events in this section of the hinterland of the Variscan belt. The structural evolution shows, in the first place, the development of a regional train of overturned folds with associated axial planar foliation (D1). Towards the lower structural levels, the deflection of the fold limbs and a subhorizontal crenulation cleavage depict the upper structural boundary of a superimposed low angle shear zone (D2), which extends at least to the deepest parts of the basement exposed in the study area. The amplification and rotation of D1 folds about a horizontal axis also occurred within this shear zone. The flat-lying character of the D2 structures accounts for the attenuation of the previously thickened crust, which developed following gravity gradients during thermal re-equilibration. Subsequent deformation led to the formation of two orthogonal sets of upright folds (D3), representing a new shift between crustal thinning and crustal thickening in the region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.