Abstract

Spectral analysis method was applied to aeromagnetic data obtained for Ikogosi warm spring (IWS) area of southwestern Nigeria. This was done with the objective of determining the bottom of the magnetized crust called Curie point depth (CDP) and understand the nature and extent of the local geothermal system at depth beneath IWS. The depth to the centroid, Zo, of the deepest distribution of the magnetic dipoles was obtained by computing least-squares fit to the lowest-frequency segment of the azimuthally averaged log power spectrum. The average depth to the top of the deepest crustal block was computed as the depth to the top, Zt, of the second lowest-frequency segment of the spectrum. The depth to the bottom of the deepest magnetic dipoles, the inferred Curie point depth, was then calculated from Zb = 2Zo − Zt. The Curie depth estimates for IWS range between 4.68 and 11.38 km (below sea level). We also estimate the heat flow and Curie temperature using a one-dimensional conductive heat transport model. The average heat flow, 42 mW m−2, and geothermal gradient, 32°C/km, obtained suggest a low enthalpy thermal regime. The Curie temperature for the region varies between 153°C and 350°C. Also, an inverse linear relationship between heat flow and Curie depths was determined. Good agreement between the Curie point depths derived from heat flow data and magnetic data suggests that the Curie point depth analysis is useful to estimate the regional thermal structure and the tectonic settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call