Abstract

The crustal structure of North Abu-Simbel area was studied using spectral ratios of short-period P waves. Three-component short period seismograms from the Masmas seismic station of the Egyptian National Seismic Network Stations were used. The Thomson-Haskell matrix formulation was applied for linearly elastic, homogeneous crustal layers. The obtained model suggests that the crust under the study region consists of a thin (0.8 km) superficial top layer with a P-wave velocity of 3.8±0.7 km/s and three distinct layers with a mean P-wave velocity of 6.6 km/s, overlaying the upper mantle with a P-wave velocity of 8.3 km/s (fixed). The results were obtained for 14 different earthquakes. The P-wave velocities of the three layers are: 5.8±0.6 km/s, 6.5±0.4 km/s and 7.2±0.3 km/s. The total depth to the Moho interface is 32±2 km. The crustal velocity model estimated using observations is relatively simple, being characterized by smooth velocity variations through the middle and lower crust and normal crustal thickness. The resultant crustal model is consistent with the model obtained from previous deep seismic soundings along the northern part of Aswan lake zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.