Abstract

We carried out seismic tomography study to reveal three-dimensional (3D) seismic velocity structures in the Noto peninsula, Japan, where swarm-like seismic activity started in December 2020. The obtained results reveal a highly heterogeneous structure in the crust. The most striking feature is the existence of a low-velocity anomaly in the lower crust beneath the Noto earthquake swarm. Although the data set used in this study cannot resolve the upper mantle structure, previous regional tomographic studies suggest that a low-velocity anomaly exists at depths of 50–150 km around the Noto peninsula that is probably interpreted as a fluid-rich region. We infer that fluids have been supplied from the uppermost mantle to the lower crust over a geological time scale and a large volume of fluids have accumulated below the seismogenic zone beneath the Noto peninsula. A further upward migration of fluids to the upper crust, which may have suddenly started in December 2020, probably triggers numerous earthquakes at depths of 10–15 km. Since major active faults exist at shallower extensions of the hypocenters of the Noto earthquake swarm, we consider that the earthquake swarm occurs along pre-existing and weak fault planes. Dense temporary seismic observations will highlight a smaller-scale (5–10 km) 3D seismic velocity model and finer hypocenter distribution, which provide additional information for better understanding of the generation mechanisms of the Noto earthquake swarm.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.