Abstract
Aso Volcano experienced a huge pyroclastic eruption 90 thousand years ago, and formed a large caldera (18 km × 25 km). In order to test the hypothesis of a magma body in the mid and lower crust that has been suggested geophysically and geochemically, we investigated seismic velocity discontinuities and velocity structure beneath Aso Caldera using receiver functions and a genetic algorithm inversion. We confirm the existence of the Moho at depths between 30 km and 35 km and a large velocity anomaly should exist in the deep portion of the crust beneath Aso Caldera, from imaging of receiver functions observed only at stations outside the caldera. As a result of a more detailed examination with GA inversion, a low velocity layer is detected at depths between 10 km and 24 km beneath the western part of the caldera. S-wave velocity of the layer is estimated to be 2.0–2.4 km/s. We estimate that the low velocity layer contains at most 15% melt or 30% aqueous fluid. The layer exists near the Conrad and at the same depths as the swarm of the low frequency earthquakes and a compressional and dilatational deformation source which are expected to be caused by fluid movement beneath the middle-eastern part of the caldera. Fluid contained in the layer might be related with huge pyroclastic eruptions of Aso Volcano.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.