Abstract
An array of ten broadband stations was installed on the Popocatépetl volcano (Mexico) for four months between October 2002 and February 2003. 26 regional and teleseismic earthquakes were selected and filtered in the frequency time domain to extract the fundamental mode of the Rayleigh wave. The average dispersion curve was obtained in two steps. Firstly, phase velocities were measured in the period range [2–50] s from the phase difference between pairs of stations, using Wiener filtering. Secondly, the average dispersion curve was calculated by combining observations from all events in order to reduce diffraction effects. The inversion of the mean phase velocity yielded a crustal model for the volcano which is consistent with previous models of the Mexican Volcanic Belt. The overall crustal structure beneath Popocatépetl is therefore not different from the surrounding area, and the velocities in the lower crust are confirmed to be relatively low. Lateral variations of the structure were also investigated by dividing the network into four parts and by applying the same procedure to each sub-array. No well-defined anomalies appeared for the two sub-arrays for which it was possible to measure a dispersion curve. However, dispersion curves associated with individual events reveal important diffraction for 6 s to 12 s periods which could correspond to strong lateral variations at 5 to 10 km depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.