Abstract
AbstractThe Hidaka collision zone, where the Kurile and northeastern (NE) Japan arcs collide, provides a useful study area for elucidating the processes of arc‐continent evolution and inland earthquakes. To produce an image of the collision structure and elucidate the mechanisms of anomalously deep inland earthquakes such as the 1970 Hidaka earthquake (M6.7), we conducted magnetotelluric observations and generated a three‐dimensional resistivity distribution in the southern part of the Hidaka collision zone. The modeled resistivity was characterized by a high resistivity area in the upper crust of the Kurile arc corresponding to metamorphic rocks. The model also showed conductive zones beneath the center of the collision zone. The boundary between the resistive and conductive areas corresponds geometrically to the Hidaka main thrust, which is regarded as the arc‐arc boundary. The correspondence supports the collision model that the upper‐middle part of crust in the Kurile arc is obducting over the NE Japan arc. The conductive areas were interpreted as fluid‐filled zones associated with collision processes and upwelling of dehydrated fluid from the subducting Pacific slab. The fluid flow possibly contributes to over‐pressurized conduction that produces deep inland earthquakes. We also observed a significant conductive anomaly beneath the area of Horoman peridotite, which may be related to the uplift of mantle materials to the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.