Abstract
Deformation in active mountain belts like the Himalaya is manifested over several spatial and temporal scales and collation of information across these scales is crucial to an integrated understanding of the overall deformation process in mountain belts. Computation and integration of geological shortening rates from retrodeformable balanced cross-sections and present-day convergent rates from deforming mountain belts is one way of integrating information across time-scales. The results from GPS measurements carried out in NE India indicate that about 15–20 mm/yr of convergence is being accommodated there. Balanced-cross sections from the NE Himalaya indicate about 350–500 km of shortening south of the South Tibet Detachment (STD). Geothermobarometry suggest that the rocks south of the STD deformed under peak metamorphic conditions at ∼ 22 Ma. This indicates a geological convergence rate of ∼ 16–22 mm/yr which appears to be fairly consistent with the GPS derived convergence rates. Approximately 1.5 to 3.5 mm/yr (∼ 10–20 %) of the total N-S of the present-day convergence in the NE Himalaya is accommodated in the Shillong Plateau. In addition, ∼ 8–9 mm/yr of E-W convergence is observed in the eastern and central parts of the Shillong Plateau relative to the Indo-Burman fold-thrust belt. Balanced cross-sections in the Indo-Burman wedge together with higher resolution GPS measurements are required in the future to build on the first-order results presented here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.