Abstract

Convergent continental margins are the major sites for the formation, differentiation, preservation, and destruction of continental crust. This article focuses on the Mesozoic crustal modification history of northeastern China from a magmatic perspective. During Mesozoic times, NE China was influenced by three convergent systems, namely the Paleo-Asian Ocean (PAO) regime to the south, the Mongol-Okhotsk Ocean (MOO) regime to the northwest, and the Paleo-Pacific Ocean (PPO) regime to the east. This study comprehensively synthesizes information on Early Triassic to Early Cretaceous magmatic rocks. We unravel the spatiotemporal effects of the above-mentioned convergent regimes by evaluating the migration of major magmatic belts and other geological and geophysical evidence. The PAO regime is confined to the southernmost part of NE China and exerted influence during pre-late Late Triassic times. The MOO regime-related magmatism lasted until the early Early Cretaceous and occurred throughout the Great Xing'an Range and adjacent regions. The spatial effect of the PPO did not exceed the eastern margin of the Songliao Basin until the Early Jurassic; low-angle to flat subduction of the PPO slab led to the westward migration of continental arc front in the Middle Jurassic and the waning of PPO regime-related magmatism in the Late Jurassic. Since the earliest Cretaceous, the rollback and retreat of the PPO slab became the predominant geodynamic control in NE China, but the superposition of the MOO regime played a role during the early Early Cretaceous. Employing whole-rock Nd and zircon Hf isotope spatial imaging, this study elucidates that, although the pre-Mesozoic lithospheric heterogeneity provides first-order control, the Mesozoic crustal architecture of NE China was further carved by Mesozoic tectonics. Retreating subduction (slab rollback) and post-collisional lithospheric delamination resulted in the prolonged extensional background and crustal growth (rejuvenation); on the contrary, low-angle subduction and syn-collisional compression could cause transient periods of ancient crust reworking. Our results also indicate the high altitude of the Great Xing'an Range and adjacent regions in the Early Cretaceous. This study opens new possibilities to explicitly document crustal modification processes in fossil orogens from a magmatic perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call