Abstract
The Norwegian-Greenland Sea (NGS) in the NE Atlantic comprises diverse tectonic regimes and structural features including sub-oceanic basins of different ages, microcontinents and conjugate volcanic passive margins, between the Greenland-Iceland-Faroe Ridge in the south and the Arctic Ocean in the north. We summarize the tectonic evolution of the area and highlight the complexity of the conjugate volcanic and rifted margins up to lithospheric rupture in the NGS. The highly magmatic breakup in the NGS was diachronous and initiated as isolated and segmented seafloor spreading centres. The early seafloor spreading system, initiating in the Early Eocene, gradually developed into atypical propagating systems with subsequent breakup(s) following a step-by-step thinning and rupture of the lithosphere. Newly-formed spreading axes propagated initially towards local Euler poles, died out, migrated or jumped laterally, changed their propagating orientation or eventually bifurcated. With the Palaeocene onset of volcanic rifting, breakup-related intrusions may have localized deformation and guided the final axis of breakup along distal regions already affected by pre-magmatic Late Cretaceous-Palaeocene and older extensional phases. The final line of lithospheric breakup may have been controlled by highly oblique extension, associated plate shearing and/or melt intrusions before and during Seaward Dipping Reflectors (SDRs) formation. The Inner SDRs and accompanying volcanics formed preferentially either on thick continental ribbons and/or moderately thinned continental crust. The segmented and diachronic evolution of the NGS spreading activity is also reflected by a time delay of 1–2 Myrs expected between the emplacement of the SDRs imaged at the Møre and Vøring margins. This complex evolution was followed by several prominent changes in spreading kinematics, the first occurring in the Middle Eocene at 47 Ma–magnetic chron C21r. Inheritance and magmatism likely influenced the complex rift reorganization resulting in the final dislocation of the Jan Mayen Microplate Complex from Greenland, in the Late Oligocene/Early Miocene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.