Abstract

The formation and deformation history of back-arc basins play a critical role in understanding the tectonics of plate interactions. Furthermore, opening of extensional back-arc basins during the overall convergence between Africa and Europe is a fundamental process in the overall tectonic evolution of the Mediterranean and adjacent areas. In this frame, Miocene tectonic evolution of the western Pannonian Basin of Central Europe and its connection to inherited Cretaceous structures of the Eastern Alpine nappes are presented. Revision of published and addition of new structural and thermochronological data, as well as seismic profiles from the western Pannonian Basin is complemented by high-resolution thermo-mechanical numerical modeling in order to propose a new physically consistent tectono-sedimentary model for the basin evolution. The onset of extension is dated as ~25–23 Ma, and higher rates are inferred between 19 and 15 Ma at the south-western part of the area (Pohorje, Kozjak Domes, Murska Sobota Ridge, and Mura-Zala Basin). Rift initiation involved the exhumation of the middle part of the Austroalpine nappe pile along low-angle detachment faults and mylonite zones. The Miocene low-angle shear zones could reactivate major Cretaceous thrust boundaries, the exhumation channel of ultra-high-pressure rocks of the Pohorje Dome, or Late Cretaceous extensional structures. Miocene extension was associated with granodiorite and dacite intrusions between 18.64 and 15 Ma. The Pohorje pluton intruded at variable depth from ~4 to 16–18 km and experienced ductile stretching, westward tilting, and asymmetric exhumation of its eastern side. Terrestrial early Miocene (Ottnangian to Karpatian, 19–17.25 Ma) syn-rift depositional environment in supradetachment basins evolved to near-shore and bathyal one by the middle Miocene (Badenian, 15.97–12.8 Ma). Deformation subsequently migrated eastwards to the western part of the Transdanubian Range (Keszthely Hills) and to newly formed grabens. In this formerly emerged terrestrial area active faulting started at 15–14.5 Ma and continued through the late Miocene almost continuously up to ~8 Ma but basically terminated in the Mura-Zala Basin by ~15 Ma (early Badenian). These observations suggest a ~200 km shift of active faulting, basin formation, and related syn-tectonic sedimentation from the SW (Pohorje and Mura-Zala Basin) toward the Pannonian Basin center. Building on the above described observational and modeling data makes the Pannonian Basin an ideal natural laboratory for understanding the coupling between deep Earth and surface processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call