Abstract

U-Pb dating coupled with Hf isotope analyses on zircon from metasedimentary granulite enclaves in the Jiuzhou peraluminous granite from the Shiwandashan area in southeastern Guangxi Province, South China are presented in this paper. The results show that the protoliths of these granulite enclaves were mainly composed of Neo-Mesoproterozoic (564–1061 Ma) clastic materials with a peak age at ∼822 Ma. These materials were probably derived from the igneous rocks that were emplaced during the Neoproterozoic breakup of Rodinian Supercontinent. Subordinate sediments include the Paleoproterozoic (1778–2227 Ma) and even the Meso-Paleoarchean materials with the oldest U-Pb age at 3551±8 Ma, indicating the existence of ancient crustal rocks in the area and/or its surrounding regions. Younger grains include the early Mesozoic (234±2 Ma) magmatic zircon populations and the late Permian (253±3 Ma) metamorphic zircon populations. Further zircon Hf isotope analyses reveal that their protoliths were complex, containing both recycled crustal rocks and juvenile materials. Combined zircon U-Pb ages and Hf isotope compositions indicate that at ∼253 Ma, the Shiwandashan area experienced an intensive thermal event that resulted in the granulite-facies metamorphism; and that crustal remelting occurred at ∼234 Ma to form the S-type granitoids during the uplifting stage. The metasedimentary granulite enclaves are resitites of these granitoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.