Abstract

New geochemical and Sr, Nd, and Pb isotopic analyses of Quaternary to Cretaceous sediments from the northeastern Indian Ocean are used to estimate the composition of the sedimentary material subducted along the Sunda Trench, and to evaluate the effects of crustal contamination versus subducted sediment input in the Quaternary volcanics of the west Sunda arc. Two sediment endmember components are identified: siliceousclastic (SS) and calcareous-organogenic (CS); the latter can be regarded as SS strongly diluted by organogenic material, mainly CaCO3. Siliceous-clastic sediments are characterised by a component isotopically and geochemically similar to “typical” average upper crust. Consequently, LILE and LREE concentrations, LILE/LILE and LILE/LREE values, and Sr, Nd, and Pb isotopic ratios in West Sunda arc volcanics cannot easily distinguish between assimilation of crustal material by uprising magmas and contamination of their mantle source by bulk sediments. Post-Miocene siliceousclastic sediments sampled in the vicinity of the Sunda arc are largely derived from the arc itself, and therefore should not be used to evaluate the extent of sediment contamination of Indonesian arc volcanics. In addition, geophysical evidence suggests that post-Miocene sediments are largely accreted rather than subducted, and existing10Be isotopic data imply that post-Miocene sediments are not recycled by present-day volcanism. As the least contaminated arc volcanics occur in the eastern section of the west Sunda arc, where the highest sediment fluxes have been calculated, subduction of pre-Miocene northeastern Indian Ocean sediments or incorporation of fluids released from them into the sources of west Sunda are volcanics seem unable to reproduce the range and spatial distribution of Sr, Nd, and Pb isotopic values in the arc volcanics. By contrast, assimilation of crustal material by uprising melts derived from Indian Ocean-type mantle wedge, up to a maximum of approximately 10% for the most contaminated arc volcanics, seems better able to account for the Sr, Nd, and Pb isotope systematics of the arc volcanics, and is consistent with the variations in crustal thickness and composition along the arc, and with the spatial distribution of Sr, Nd, and Ph isotope values in mafic arc volcanics. These conclusions are also supported by the low10Be coupled with high B/Be values, and by the positive B/Be-SiO2 and B/Be-87Sr/86Sr correlations in calc-alkaline Sunda arc volcanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call