Abstract

The Piton de la Fournaise basaltic volcano, on La Reunion Island in the western Indian Ocean, is one of the most active volcanoes in the world. This volcano is classically considered as the surface expression of an upwelling mantle plume and its activity is continuously monitored, providing detailed information on its superficial dynamics and on the edifice structure. Deeper crustal and upper mantle structure under La Reunion Island is surprisingly poorly constrained, motivating this study. We used receiver function techniques to determine a shear wave velocity profile through the crust and uppermost mantle beneath La Reunion , but also at other seismic stations located on the hotspot track, to investigate the plume and lithosphere interaction and its evolution through time. Receiver functions (RFs) were computed at permanent broad-band seismic stations from the GEOSCOPE network (on La Reunion and Rodrigues), at IRIS stations MRIV and DGAR installed on Mauritius and Diego Garcia islands, and at the GEOFON stations KAAM and HMDM on the Maldives. We performed non-linear inversions of RFs through modelling of P-to-S conversions at various crustal and upper mantle interfaces. Joint inversion of RF and surface wave dispersion data suggests a much deeper Mohorovici´iscontinuity (Moho) beneath Mauritius (∼21 km) compared to La Reunion (∼12 km). A magmatic underplated body may be present under La Reunion as a thin layer (≤3 km thick), as suggested by a previous seismic refraction study, and as a much thicker layer beneath other stations located on the hotspot track, suggesting that underplating is an important process resulting from the plume–lithosphere interaction. We find evidence for a strikingly low velocity layer starting at about 33 km depth beneath La Reunion that we interpret as a zone of partial melt beneath the active volcano. We finally observe low velocities below 70 km beneath La Reunion and below 50 km beneath Mauritius that could represent the base of the oceanic lithosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.