Abstract

Sm-Nd isotopic compositions were determined for the peralkaline Ilímaussaq Complex of the Gardar Province of southern Greenland. The majority of the samples in the agpaitic and augite syenitic units have near chondritic initial ɛ Nd(≈ 0), whereas a few samples trend towards ɛ Nd values as low as − 6 at the time of intrusion (1143 Ma). This latter value, from a sample taken from the margin of the complex, lying on the evolutionary trend for Ketilidian country-rock granitoids, suggests that large-scale contamination took place only at the margins of the complex. The similarity of the Nd isotopic compositions of the augite syenite and agpaitic units suggests that their parental magmas were derived from the same reservoir. A comparison of the Nd with existing Sr and Hf isotopic data for the complex suggests an origin by combined assimilation fractionation processes. Assimilation-fractional crystallization modeling of the isotopic compositions indicates that the Ilímaussaq magmas could have formed through fractional crystallization of a basaltic melt while assimilating granitic crust. The model requires initially higher assimilation rates from basalt to augite syenite composition with subsequent decreasing assimilation rates from augite syenite to agpaitic compositions. Alkali granites, which formed after the intrusion of the augite syenites, have isotopic compositions intermediate between those of the augite syenites and the surrounding Ketilidian basement. This implies even greater amounts of assimilation and is interpreted as evidence for an origin through fractionation of a basaltic or augite syenite magma with concurrent assimilation of Ketilidian crust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call