Abstract
AbstractHigh-Mg adakite rocks preserve crucial information about the crust-mantle interactions during the magma evolution. The Luxi Terrane, southeastern North China Craton, stores a set of Early Cretaceous high-Mg adakite rocks; nevertheless, their petrogenesis remains controversial. In this study, we present new whole-rock geochemistry, zircon U-Pb-Hf isotopes in the Tiezhai, Jinxingtou, and Sanshanyu complexes which are composed of gabbroic diorite, diorites, syenites, and monzonites. Field observations and zircon U-Pb dating indicate that all of the rock units crystallized contemporaneously at ca. 125–120 Ma. They are characterized by high Al2O3 and Sr contents, and low MgO, Y, Yb, and heavy rare earth elements contents, coupled with high Sr/Y values (42–163), showing adakitic affinities. The magma mixing process is supported by the following ample evidence: (1) the disequilibrium mineral textures and mafic enclaves; (2) high Mg# values (37–69, Mean = 58); and (3) widely zircons εHf(t) values (−25.6 to +7.8). The signature geochemical characteristics support that the adakites were generated by magma mixing of ancient crust-derived melts and relatively mafic melts from metasomatized mantle source. In combined with regional geology, the Early Cretaceous high-Mg adakites in Luxi Terrane represent the magmatic response of intensive crust-mantle interaction caused by the underplating of voluminous mantle-derived magma in an extension intracontinental setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.