Abstract
Thin-walled lattice materials can be applied as energy absorbers in protective structures of civil defense. In this paper, quasi-static in-plane crushing tests were carried out to investigate the crushing behavior and energy absorption of buckling induced meta-lattice structures (BIMSs) with different central angles made of plastic iron material DT3 and formed by wire cutting technique. Three crushing patterns were revealed and analyzed. The test results clearly show that the initial peak force (IPF), the crushing force efficiency (CFE), the specific energy absorption (SEA) and the mean crushing force (MCF) can be substantially improved by introducing buckling pattern into the straight-walled lattice structure. The MCF of the BIMS was consistently predicted based on the simplified super folding element (SSFE) and the flattening element.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.