Abstract
Developing an innovative protective structure with excellent energy absorption performance is a continuous research effort. The emerging additive manufacturing techniques allow fabricating structures with complex geometrical shapes which have the potential to yield unprecedented energy absorption properties.Accordingly, in this paper, the crush and energy absorption behaviour of new designs, namely Concave Tubes (CTs) featuring inwardly curved sidewalls, is assessed experimentally and compared to that of Standard tubes (STs) featuring straight sidewalls. Tubes with different geometrical configurations, including concave circular (CC), concave square (CS), standard circular (SC), and standard square (SS), are fabricated using the Selective Laser Melting (SLM) process from AlSi10Mg aluminium powder and then crushed axially under quasi-static loading. It was found that the tubes have fractured and developed a splitting deformation mode, instead of progressive buckling, during the axial crushing resulting in relatively low energy absorption performance. The experimental results revealed superior energy absorption performance for the CTs over the STs. A Multi-Attribute Decision Making (MADM) technique known as Complex Proportional Assessment (COPRAS) is used to identify the best design. The COPRAS results show that the CC design is the best energy absorbing tube outperforming all other configurations presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.