Abstract

Abstract We propose a new proxy that employs assemblages of fossil turtle shells to estimate the timing and depth at which fossilization and lithification occur in shallowly buried terrestrial strata. This proxy, the Turtle Compaction Index (TCI), leverages the mechanical failure properties of extant turtle shells and the material properties of sediments that encase fossil turtle shells to estimate the burial depths over which turtle shells become compacted. Because turtle shells are one of the most abundant macroscopic terrestrial fossils in late Mesozoic and younger strata, the compactional attributes of a suite of turtle shells can be paired with geochronologic and stratigraphic data to constrain burial histories of continental settings—a knowledge gap unfilled by traditional burial-depth proxies, most of which are more sensitive to deeper burial depths. Pilot TCI studies of suites of shallowly buried turtle shells from the Denver and Williston basins suggest that such assemblages are sensitive indicators of the depths (~10–500 m) at which fossils and their encasing sediment become sufficiently lithified to inhibit further shell compaction, which is when taphonomic processes correspondingly wane. This work also confirms previously hypothesized shallow Cenozoic burial histories for each of these basins. TCI from mudstone-encased turtle shells can be paired with thicknesses and ages of overlying strata to create geohistorical burial curves that indicate when such post-burial processes were active.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.