Abstract

Upon crumpling, graphene sheets yield intriguing hierarchical structures with high resistance to compression and aggregation, garnering a great deal of attention in recent years for their remarkable potential in a variety of applications. Here, we aim to understand the effect of Stone-Wales (SW) defects, i.e., a typical topological defect of graphene, on the crumpling behavior of graphene sheets at a fundamental level. By employing atomistically informed coarse-grained molecular dynamics (CG-MD) simulations, we find that SW defects strongly influence the sheet conformation as manifested by the change in size scaling laws and weaken the self-adhesion of the sheet during the crumpling process. Remarkably, the analyses of the internal structures (i.e., local curvatures, stresses, and cross-section patterns) of crumpled graphene emphasize the enhanced mechanical heterogeneity and "glass-like" amorphous state elicited by SW defects. Our findings pave the way for understanding and exploring the tailored design of crumpled structure via defect engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call