Abstract
Summary With its high theoretical capacity and low electrochemical potential, Li metal itself would be the ideal anode for Li-ion batteries. However, practical use of the Li anode has been hindered by its tendency for dendritic growth, which leads to unstable solid electrolyte interphase, volume fluctuation during cycling, and even shorting of the battery. This problem can be solved by employing a conducting, lightweight, and lithiophilic scaffold that can stabilize high loading of Li during cycling and avoid its dendritic filament growth. Here we report that crumpled paper ball-like graphene particles can readily assemble to yield a scaffold with scalable Li loading up to 10 mA hr cm −2 within tolerable volume fluctuation. High Coulombic efficiency of 97.5% over 750 cycles (1,500 hr) was achieved. Plating/stripping Li up to 12 mA hr cm −2 on crumpled graphene scaffold does not experience dendrite growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.