Abstract
A novel, three-dimensional (3D), self-supporting material—the crumpled graphene ball—was developed using an aerosol capillary approach. The resultant crumpled-graphene-ball architecture showed a self-supporting, 3D network microstructure with plenty of ridges and wrinkles. Due to their unique structural characteristics, the 3D balls exhibited a rapid adsorption rate and superior adsorption capacity toward the copper ion (Cu2+). It was noted that the adsorption capacity for Cu2+ reached about 224.56 mg/g within 2 min. A high adsorption capacity, fast adsorption kinetics, excellent regeneration and reusability characteristics, and the ease of materials processing make these crumpled graphene balls ideal candidates for heavy metal ion decontamination in practical application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.