Abstract

Surface modulation of polyamide structures and the development of nanochanneled membranes with excellent water transport properties are crucial for the separation performance enhancement of thin-film composite membranes. Here, we demonstrate the fabrication of a modular nanochannel-integrated polyamide network on a nanoporous interlayer membrane comprising Mxene-reinforced protein-polyphenol nanoaggregates. The research indicates that the confined growth of the polyamide matrix inside this hydrophilic sub-10 nm nanochannel nanoporous intermediate layer stiffened the interfacial channels, leading to the formation of a polyamide layer with a spatial distribution of a network of unique 3D crumpled globule-like nanostructures. The high specific surface area of such a morphology bestowed the membrane with increased filtration area while facilitating the nanofluidic transport of water molecules through the nanochanneled membrane structure, leading to enhanced water flux of up to 26.6 L m-2 h-1 (active layer facing the feed solution) and 41.0 L m-2 h-1 (active layer facing the draw solution) using 1.0 M NaCl as the draw solution. The membrane equally exhibited good treatment for organic solvent forward osmosis filtration and typical seawater desalination. Moreover, the hierarchical nanostructures induced antimicrobial activity by effectively reducing the biofilm formation of Gram-negative Escherichia coli bacteria. This work provides significant insights into the interfacial engineering and compatibility of the nanomaterials and the polymers in interlayer mixed-matrix membranes, which are environmentally sustainable and cost-effective for the fabrication of advanced forward osmosis membranes for water purification and osmotic energy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call