Abstract

The aim of this work is to obtain better water resistance properties with additives to starch at the size press. A further goal is to replace petroleum-based additives with environmentally friendly hydrophobic agents obtained by derivatization of wood rosin. A crude wood rosin (CWR) sample was methylated and analyzed with gas chromatography–mass spectrometry (GC–MS). Methyl abietate, dehydroabietic acid, and abietic acid were the main constituents of the sample. The crude wood rosin samples were fortified with fumaric acid and then esterified with pentaerythritol. Fortified and esterified wood rosin samples were dissolved in ethanol and emulsified with cationic starch to make them suitable as hydrophobic additives for surface treatment formulations in mixtures with starch. These hydrophobic agents (2% on a dry weight basis in a cationic starch solution) were applied to paperboard, bleached kraft paper, and test liner paper using a rod coater with a target pickup of 3–5 gsm. The solution pickup was controlled by varying the rod number. The amounts of hydrophobic material applied in the preparation of the paper samples were 32.2, 48.6, and 35.1 lb/ton pickup compared to three types of base papers. Basic surface features of fortified and fortified and esterified rosin-treated paper were compared with base paper and paper treated with starch alone. Lower Cobb60 values were obtained for fortified and esterified samples than for linerboard samples that had been surface-sized just by starch. Thus, as novel hydrophobic additive agents, derivatives of CWR can be a green way to increase hydrophobicity while reducing starch consumption in papermaking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.