Abstract
BackgroundIlex latifolia Thunb. (Da Ye Dong Qing) is used for weight loss and for its antidiabetic effects. This study aims to investigate the beneficial effects and potential mechanisms of action of crude triterpenoid saponins (CTS) from I. latifolia in a mouse model of high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD).MethodsMale C57BL/6 mice (n = 50), were arbitrarily divided into five groups (n = 10 in each group): a control group, HFD group, simvastatin group (10 mg/kg/day), and two CTS treatment groups (100 and 200 mg/kg/day). All mice except those in the control group were fed an HFD for 4 weeks. Animals in the treatment groups were orally administered simvastatin or CTS for 8 weeks. Oral glucose tolerance tests and insulin tolerance tests were performed. At the end of treatment, plasma lipid levels, and oxidative parameters in the liver were measured using commercial test kits. Western blotting was used to evaluate whether CTS induced AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase activation, and the expression of transcription factors and their target genes was evaluated in a quantitative PCR assay.ResultsCompared with the HFD group, the CTS (200 mg/kg/day) treatment group showed significantly decreased plasma lipid parameters (P < 0.001, P = 0.018, and P = 0.005 for triglycerides, total cholesterol and low-density lipoprotein cholesterol, respectively), and improved insulin resistance (P = 0.006). CTS (100 and 200 mg/kg/day) supplementation also reduced hepatic lipids and protected the liver from oxidative stress by attenuating malondialdehyde content (P < 0.001 and P < 0.001, respectively) and restoring aspartate aminotransferase levels (P < 0.001 and P < 0.001, respectively). Moreover, CTS (200 mg/kg/day) reduced lipid accumulation by enhancing AMPK phosphorylation and inhibiting expression of sterol regulatory element-binding proteins (SREBPs) and their target genes SREBP-1c, SREBP-2, fatty acid synthase, and stearoyl-CoA desaturase (P = 0.013, P = 0.007, P = 0.011, and P = 0.014, respectively).ConclusionCTS from I. latifolia improved insulin resistance and liver injury in HFD-fed mice, and attenuated NAFLD via the activation of AMPK and inhibition of the gene expression of SREBPs and some of their target molecules.
Highlights
Ilex latifolia Thunb. (Da Ye Dong Qing) is used for weight loss and for its antidiabetic effects
Many enzymes and transcription factors are involved in lipogenesis and are organized into multi-enzyme complexes to promote fatty acid synthesis, including acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD-1), and sterol regulatory element-binding protein (SREBP) [7, 8]
crude triterpenoid saponins (CTS) reduce the body, liver, and adipose tissue weights in mice fed the high-fat diet (HFD) Compared with the control group, mice fed the HFD for 12 weeks exhibited an obvious increase in body, liver, and adipose tissue weights (P = 0.007, P < 0.001, and P < 0.001, respectively)
Summary
Ilex latifolia Thunb. (Da Ye Dong Qing) is used for weight loss and for its antidiabetic effects. This study aims to investigate the beneficial effects and potential mechanisms of action of crude triterpenoid saponins (CTS) from I. latifolia in a mouse model of high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD). Non-alcoholic fatty liver disease (NAFLD) is characterized by fatty changes in the liver that do not occur as a result of alcohol intake. It refers to a wide spectrum of conditions involving liver damage, including non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and its complications [1, 2], and is regarded as a manifestation of metabolic syndrome and a shared pathogenic factor for obesity, type 2 diabetes mellitus (T2DM), and cardiovascular disease [3, 4]. Increasing evidence indicates an inverse correlation between AMPK and SREBP-1c in hepatocytes and the livers of high-fat diet (HFD)-fed or ethanol-fed mice [11, 12]. The regulation of AMPK and SREBP may be of key therapeutic importance in preventing fatty liver disease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.